Evolutionary mechanisms of habitat invasions, using the copepod Eurytemora affinis as a model system
نویسنده
چکیده
The study of the copepod Eurytemora affinis has provided unprecedented insights into mechanisms of invasive success. In this invited review, I summarize a subset of work from my laboratory to highlight key insights gained from studying E. affinis as a model system. Invasive species with brackish origins are overrepresented in freshwater habitats. The copepod E. affinis is an example of such a brackish invader, and has invaded freshwater habitats multiple times independently in recent years. These invasions were accompanied by the evolution of physiological tolerance and plasticity, increased body fluid regulation, and evolutionary shifts in ion transporter (V-type H(+) ATPase, Na(+), K(+)-ATPase) activity and expression. These evolutionary changes occurred in parallel across independent invasions in nature and in laboratory selection experiments. Selection appears to act on standing genetic variation during invasions, and maintenance of this variation is likely facilitated through 'beneficial reversal of dominance' in salinity tolerance across habitats. Expression of critical ion transporters is localized in newly discovered Crusalis leg organs. Increased freshwater tolerance is accompanied by costs to development time and greater requirements for food. High-food concentration increases low-salinity tolerance, allowing saline populations to invade freshwater habitats. Mechanisms observed here likely have relevance for other taxa undergoing fundamental niche expansions.
منابع مشابه
The Legs Have It: In Situ Expression of Ion Transporters V-Type H(+)-ATPase and Na(+)/K(+)-ATPase in the Osmoregulatory Leg Organs of the Invading Copepod Eurytemora affinis.
The copepod Eurytemora affinis has an unusually broad salinity range, as some populations have recently invaded freshwater habitats independently from their ancestral saline habitats. Prior studies have shown evolutionary shifts in ion transporter activity during freshwater invasions and localization of ion transporters in newly discovered "Crusalis organs" in the swimming legs. The goals of th...
متن کاملDNA-Feulgen cytophotometric determination of genome size for the freshwater-invading copepod Eurytemora affinis.
Variation in nuclear DNA content within some eukaryotic species is well documented, but causes and consequences of such variation remain unclear. Here we report genome size of an estuarine and salt-marsh calanoid copepod, Eurytemora affinis, which has recently invaded inland freshwater habitats independently and repeatedly in North America, Europe, and Asia. Adults and embryos of E. affinis fro...
متن کاملRapid evolution of body fluid regulation following independent invasions into freshwater habitats.
Colonizations from marine to freshwater environments constitute among the most dramatic evolutionary transitions in the history of life. Colonizing dilute environments poses great challenges for acquiring essential ions against steep concentration gradients. This study explored the evolution of body fluid regulation following freshwater invasions by the copepod Eurytemora affinis. The goals of ...
متن کاملHeterogeneity within the native range: population genetic analyses of sympatric invasive and noninvasive clades of the freshwater invading copepod Eurytemora affinis.
Invasive species are often composed of highly differentiated populations or sibling species distributed across their native ranges. This study analysed patterns of distribution and the evolutionary and demographic histories of populations within the native range of the copepod species complex Eurytemora affinis. Genetic structure was analysed for samples from 17 locations from both the invaded ...
متن کاملTesting for beneficial reversal of dominance during salinity shifts in the invasive copepod Eurytemora affinis, and implications for the maintenance of genetic variation.
Maintenance of genetic variation at loci under selection has profound implications for adaptation under environmental change. In temporally and spatially varying habitats, non-neutral polymorphism could be maintained by heterozygote advantage across environments (marginal overdominance), which could be greatly increased by beneficial reversal of dominance across conditions. We tested for revers...
متن کامل